
 W H I T E P A P E R

How to Mitigate Software
Supply Chain Risk
The need to inspect all files during the software development process

Open source software is created by talented software
developers from around the world who donate their time
and intelligence to create software and components,
then provide those free of charge to anyone wishing to
use them under the terms of their licenses (including the
Beerware license). The benefits open source software
brings to the world are immeasurable. Open source
components accelerate time to market and lower
development costs. In a world where software-enabled

features are growing and rapid development processes
like agile, DevOps, and CI-CD are required, open source is
here to stay.

For all its benefits, however, open source can also
present risks. Like all software, it can include coding
errors that result in vulnerabilities. Most are unintentional,
but some can be deliberate.

Attacking the Software Supply Chain
Hackers are rational actors; they want to accomplish their goals using the least
amount of effort possible. Attacking proprietary applications can be hard work.
Hackers need to conduct research – ideally by obtaining a copy of the software –
then attempt to find weaknesses they can exploit.

After years of attacking networks and custom software, enterprising hackers
found an easier attack vector and switched to attacking the application develop-
ment process itself. Even better, attackers need not break into an organization’s
source repository. Instead, they simply add their malicious code to common
open source projects used by organizations and wait for the developers to add
the code to proprietary applications themselves.

For years criminals and hackers have used open source to distribute malicious
code. Since anyone can create and distribute open source software, criminals
can submit updates to well-known packages hoping maintainers will miss the
malicious code, or offer to help with continued maintenance of a project. Even
more straightforward is to create a project with a plausibly similar project name
that is fully under the criminal’s control. The package can be entirely bogus or a
clone of a well-known project but with select hidden malicious characteristics.

By infecting the Open Source, the responsibility for Breach moves onto Applica-
tion Developers who are no longer an innocent victim but rather unsuspecting
accomplices.

www.reversinglabs.comWHITE PAPER

Open Source Software (OSS) Attacks
If a hacker can successfully add a secret backdoor to a widely used open source
project, development organizations will effectively do the hacking for them as
they download millions of open source packages from GitHub, PyPI, npm,
RubyGems, and other repositories. It is an effective attack vector dating back to
at least 2003 when an unknown hacker added a backdoor to the Linux kernel. It is
also gaining in popularity. One study found “prototype pollution”, introducing
malicious code into otherwise trustworthy components, in over 25% of all open
source projects reviewed ¹.
If the compromised open source is popular, the attack can affect thousands of
applications.

Counterfeit open source is introduced through at least three different attack
vectors:

TYPOSQUATTING
Typosquatting is a form of counterfeit open source that occurs when hackers
add their malicious code to that of a legitimate file and change the file name
slightly to fool developers downloading packages from support sites. On NPM, a
hacker added a password recovery tool that would collect and forward creden-
tials to file named bb-builder, hoping users would confuse it with a legitimate file
named bb-build. It was downloaded hundreds of times before it was detected by
ReversingLabs. Similarly, a hacker contributed a module named “libpeshnx” to
popular Python repository PyPI. Its name was similar to a module named
"libpeshna" and contained a backdoor intended to allow hackers to take control of
devices that used the counterfeit code.

BYPASSING COMMIT CONTROLS
While anyone is free to contribute code to an open source project, only certain
individuals can commit code for distribution. “Committers” or “Maintainers”
review all contributions to ensure they are appropriate for the project. One way to
bypass these controls is to redistribute code through unofficial channels. In one
example, hackers added malicious code to Xcode, Apple's official tool for devel-
oping iOS and OS X apps, and offered it on a site promising better download
speeds in China. The attack compromised over 50 applications offered on the
Apple App Store, and affected hundreds of million individual devices when users
installed the apps.

ATTACKS ON SOFTWARE DISTRIBUTION NETWORKS
Compromising legitimate software, particularly software with automatic updates,
guarantees a widespread breach. In 2017, hackers gained access to CCleaner’s
download servers and replaced the legitimate application with one including
malicious software, infecting over 20 million users’. Likewise, NotPetya ransom-
ware was originally delivered through the compromised update servers of M.E.
Doc software.

 ¹ Snyk 2020 State of Open Source Security Report

HIDDEN FUNCTIONALITY
Hidden functionality can allow attackers to leverage open source weaknesses.
This is typically unintentional, as when a contributor to OpenSSL neglected to
validate a variable. This error – which resulted in the Heartbleed vulnerability –
went unnoticed for over two years. Hidden functionality can also be from
malicious intent; an unknown hacker added a backdoor to Webmin, an open
source tool for administering Linux systems, and distributed the compromised
software on SourceForge. The backdoor allows a remote attacker to run remote
code execution attacks on Webmin installations.

Why Security Defenses Fail
The software development world has changed greatly over the past years.
Counterfeit open source leverages changes in how organizations build software
to gain a foothold. These include more rapid development and deployment
environments and the widespread adoption of open source.

The Demand for Rapid Development - As software-enabled features grow in
importance, the ability to deliver new features, faster, has made development a
competitive differentiator. Agile, DevOps, and Continuous Integration – Continu-
ous Delivery (CI-CD) now dominate new software projects. Rather than delivering
a few builds per year, teams may push new builds to production dozens or
hundreds of times each day. Traditional security tools that can take hours to
perform tests struggle to add value in high velocity environments.

Adoption of Open Source - Organizations in banking, software, government,
critical infrastructure, and entertainment have embraced open source software
and components. A recent study of over 1,200 commercial applications found
open source in 99% of the software, and that on average open source comprised
70% of an application’s codebase. In addition, most open source projects are
volunteer efforts and therefore cannot afford security scanning tools.

Scarce Security Talent - Demand for security expertise outpaces supply.
Research indicates worldwide there are between 3.5 million and 4 million unfilled
cybersecurity jobs. Teams struggle to maintain basic items like least privilege
controls and security requirements, much less controls for supply chain attacks.

Failing Security Technology - Counterfeit open source is different from normal
malware and is not addressed by any traditional security defense. Traditional
security testing tools like static and dynamic code defect analysis are designed
to identify coding errors that can result in vulnerabilities. They are not capable of
conducting deep malware analysis.

Source Composition Analysis (SCA) scanners either parse a build file or scan
source and binaries to identify open source components. These tools only
identify malicious packages if those have been previously flagged as a “compo-
nent with known vulnerabilities” and including a Common Vulernabilities and
Exposures or CVE designation. Since these components are frequently modified
by developers, a missing or misnamed file does not raise any flags. While
organizations spend millions looking for suspicious and malicious files in
network traffic and email attachments, typosquatting travels through the normal
development process in files. Malware scanners do not scan builds.

Source Composition
Analysis tools only identify
components with
malicious packages if that
component has been
added to a vulnerability
database. In short, they can
only identify malicious
code if it is published as a
“known vulnerabilities”

Mitigating Third-Party and Open Source Risk
Identifying evidence of and blocking counterfeit open source requires a different
approach from traditional testing tools. Instead of scanning for coding errors or
constantly changing hashes of open source components, teams need to look at
the contents of the files. This includes:

• Check for Infected Build and DevOps Systems - Compilers transform human
readable source code into machine readable binaries. Attacks that target
compilers, like the W32/Induc-A virus on the Delphi compiler, add malicious
code to an application during the build process, subsequently infecting all
devices on which the application is installed. Like other viruses, these can be
detected by their signature. However, since traditional antivirus software uses
hook and inject methods, they will break compile and link processes if installed
on a build device.

• Know Where Your Code Originates - Knowing the trusted provenance of Open
Source and its historic maintenance record is critical. One should always
attempt to download projects from the main repository, be suspect of pre-built
binaries and investigate known forks or similarly sounding projects to identify
those with genuine community of users.

• Examine Components for Malicious Code - As noted, typosquatting attacks
modify legitimate open source libraries with backdoors and malicious code.
Recent research by ReversingLabs found over 760 malicious packages in the
RubyGems repository. Since open source projects change rapidly, simple hashes
for code releases or reliance on package manager parsing to identify “vulnerable”
components is insufficient.

Since attacks and backdoors can be hidden in any type of file, a better approach
is to extract, unpack, and examine every file to identify evidence of malicious
code and unwanted file types. This includes accidental or deliberate inclusion of
web shells, backdoors, coin-mining libraries, or pen testing and IT tools.

• Block or Patch Legitimate but Vulnerable Open Source - While not counterfeit
software, vulnerable open source components are nonetheless an attractive
attack vector; the 2017 Equifax breach resulted from a known vulnerability in
Apache Struts. The successful attack was hardly surprising; the OWASP Top 10
list of web application vulnerabilities includes using software with known vulnera-
bilities. In 2019, over 22,000 new vulnerabilities were disclosed in open source
components, and an estimated 30% of the vulnerabilities included a publicly
available exploit or proof of concept.

Organizations can mitigate the risk from vulnerable components by maintaining a
complete Software Bill of Materials (SBoM)for each application and mapping
those components to public sources of vulnerabilities like the National Vulnerabil-
ity Database. Creating and examining the SBoM prior to releasing or publishing
new code greatly improves an application’s security profile. Since new vulnerabil-
ities are disclosed every day, it is critical to continuously monitor sources for the
disclosure of new vulnerabilities in components used in internal projects.

VULNERABILITIES DISCLOSED PER YEAR

5,000

0

10,000

15,000

20,000

25,000

15,412

2015 2016

16,326

2017

22,511

2018

23,210

2019

22,316

• Check Your Certificates - Digital certificates are generated and authenticated by
Certificate Authorities (CA) and used to verify the provenance of software. When
a CA is breached, attackers can generate digital certificates themselves and use
these to sign malware.

Explainable Threat Intelligence
Counterfeit and vulnerable open source simplify an adversary’s job by inserting
malicious code or vulnerabilities directly in the target applications. While tradi-
tional security testing tools and malware scanners cannot stop this threat,
examination of all files during the development process can identify and block
backdoors and other malicious code from infecting software. By integrating this
into the build and release process, security and development can work together to
build more secure software.
To determine the risk profile of any Counterfeit Open Source and build a sound
defensive strategy, security teams need field intelligence and an understanding of
the tracking and tools used by their adversaries. ReversingLabs’ Explainable
Threat Intelligence delivers detailed additional information on behavioral charac-
teristics, Indicators of Compromise, and additional decision support data for any
potential malware family or malware actor connections.

How ReversingLabs Helps
ReversingLabs fills a critical gap in application security testing (AST) tools. Rather
than looking for coding errors made by developers (like Static AST or SAST, and
Dymanic AST or DAST) or simply the presence of an open source component with
a known vulnerability, ReversingLabs quickly and carefully inspects every file in
every component to discover malicious code, Indicators of Compromise, and
invalid or compromised certificates.

ReversingLabs Titanium Platform works within the Secure Development Lifecycle
(SDLC) to identify malicious code and vulnerable components before software is
released.

+1.617.250.7518
sales@reversinglabs.com

www.reversinglabs.com

ReversingLabs

© Copyright 2021. ReversingLabs. All rights reserved. ReversingLabs is the registered
trademark of ReversingLabs US Inc. All other product and company names mentioned are
trademarks or registered trademarks of their respective owners. 2021 January.

WHITE PAPER

COMPARISON OF R EVER SI NG LABS, SO U R CE COM POS ITION ANALYS IS , STATIC ANALYS IS AND DYNAM IC ANALYSIS

SASTSCA DASTReversingLabs

Identify components with
known vulnerabil it ies

Examines non-traditional f i le
payloads for malicious code
and known malware

Examines all f i les and
identify suspicious IOCs

Examines all build and
container fi les for malware
and occlusions

Inspect all crypto certif icates
for reputation, validity and
indicators of compromise

R E Q U E S T A D E M O

https://register.reversinglabs.com/demo

