
OPEN SOURCE SECURITY
AND RISK ANALYSIS REPORT

2 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

TABLE OF CONTENTS
Introduction .. 3

About the CyRC and the 2021 Open Source Security and Risk Analysis report .. 4

Overview ... 5
Open source in 2020 .. 6

Terminology used in this report ...7
Industry sectors and open source ...8

Vulnerabilities and Security ... 9
Open source vulnerabilities and security ...10

Parallels between the ‘State of Mobile Application Security’ and OSSRA reports .. 11
The top 10 vulnerabilities ... 13

Licensing .. 15
Open source licensing ...16

Understanding license risk ... 17

Sustainability .. 19
Open source sustainability ..20

The price of popularity .. 21

Conclusion .. 23
The Peter Parker principle ...24

Mistakes versus malice .. 25
Coverity Scan data ... 25
NGINX Open Source: A Coverity Scan Case Study .. 26
Create demand for a Bill of Materials .. 27
Coda ... 27

Further reading ...28
References ...28

INTRODUCTION

ABOUT THE CYRC AND THE 2021
OPEN SOURCE SECURITY AND RISK
ANALYSIS REPORT
The Synopsys Cybersecurity Research Center’s
(CyRC) mission is to publish security advisories and
research to help organizations better develop and
consume secure, high-quality software. Our most
recent security and software quality reports include
“Peril in a Pandemic: The State of Mobile Application
Security,” an analysis of the most popular Android
apps used during the COVID-19 pandemic; and
“DevSecOps Practices and Open Source Management
in 2020,” a survey of software professionals on open
source management and DevSecOps.

This research, the CyRC’s annual “Open Source
Security and Risk Analysis” (OSSRA) report, provides
an in-depth snapshot of the current state of open
source security, compliance, licensing, and code
quality risk in commercial software.

For over 17 years, security, development, and legal
teams around the globe have relied on Black Duck®

IN
TR

O
D

U
C

TI
O

N

4 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

software composition analysis (SCA) solutions and
Audit Services. Our SCA solutions help organizations
identify and track open source code and automate the
enforcement of open source policies through integration
with currently used DevOps tools and processes. Our
Audit Services team conducts audits on thousands of
codebases for customers each year, both to support
merger and acquisition (M&A) transactions and to
provide customers with a comprehensive, up-to-date Bill
of Materials of the open source, third-party code, web
services, and APIs used in their applications.

The audit data is cross-referenced with the Black Duck
KnowledgeBase™ to identify potential license compliance
and security risks as well as other factors that may
affect the overall codebase. Curated by the CyRC, the
KnowledgeBase houses data on millions of open source
libraries from over 24,000 forges and repositories.

Audits are the primary source of data for the 2021
OSSRA report. Additional data used in the report
(specifically in the “Parallels between the ‘State of Mobile
Application Security’ and OSSRA reports” section and
the conclusion) comes from Black Duck Binary Analyses

and Coverity Scan®. The 2020 audit data analysis used
in this report was conducted by the CyRC’s Belfast and
Boston teams. In addition to validating data used in the
OSSRA, the Belfast team’s work forms the basis of Black
Duck Security Advisories (BDSAs), which offer enhanced
vulnerability information that the team publishes as a
service to commercial Black Duck customers.

This year, the CyRC teams examined anonymized audit
findings from over 1,500 commercial codebases in 17
industries. You need look no further than the pages
of this report to see that open source libraries are the
foundation for literally every application in every industry.
But paralleling the popularity of open source is a growth
in risk—specifically around open source licensing,
security, code quality, and maintenance.

This sixth edition of our report, the 2021 OSSRA, includes
recommendations to help open source developers and
consumers better understand the software ecosystem
they are part of, as well as the risks that come with
unmanaged open source development and use.

https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/knowledgebase.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/knowledgebase.html
https://scan.coverity.com/

OVERVIEW

6 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

O
V

ER
V

IE
W

CODEBASES
AUDITED IN 2020

17 INDUSTRIES REPRESENTED

OF CODEBASES
HAD LICENSE
CONFLICTS

THE AVERAGE
VULNERABILITY

FOUND WAS

YEARS OLD

OF CODEBASES HAD AT
LEAST ONE VULNERABILITY

WITH AN AVERAGE OF

PER CODEBASE

OF ALL CODEBASES WERE
COMPOSED OF OPEN SOURCE

C
O

D
EBASES CONTAINED OPEN S

OU
RC

E

PERCENT OF

Open source in 2020

TERMINOLOGY USED IN THIS REPORT

Codebase
The code and associated libraries that make up an
application or service.

Binary analysis
A type of static analysis that examines the software
of an application when access to the source code
isn’t possible.

Black Duck Security Advisory (BDSA)
A classification of open source vulnerabilities
identified by the CyRC security research team.
BDSAs provide Synopsys customers with early
and/or supplemental notification of open source
vulnerabilities and upgrade/patch guidance.

Software library
Prewritten code that developers can add to their
software. A software library might be a utility, such
as a calendar function, or a comprehensive software
framework supporting an entire application.

Dependency
A software library becomes a dependency
when other software uses it—that is, when
software becomes dependent on that library.
Any given application or service may have many
dependencies, which themselves may be dependent
on other libraries.

Open source license
A set of terms and conditions stating end-user
obligations when an open source library is used in
software, including how the library may be used and
redistributed. Most open source licenses fall into
one of two categories:

• Permissive license
A permissive license allows use with few
restrictions. Generally, the main requirement of
this type of license is to include attribution of the
original code to the original developers.

• Copyleft license
This type of license generally includes a
reciprocity obligation stating that modified and
extended versions are released under the same
terms and conditions as the original code.
Commercial entities are wary of including open
source with copyleft licenses in their software,
as its use can call the overall codebase’s
intellectual property (IP) into question.

Bill of Materials (BOM)
A comprehensive inventory of the open source
dependencies in a codebase, often generated by a
software composition analysis tool. A BOM lists all
the open source, associated licenses, versions in
use, download locations for libraries/dependencies,
and subdependencies the dependencies link to.

Software composition analysis (SCA)
A type of application security tool used to automate
the process of open source software management.
SCA tools identify the open source used in a
codebase, provide risk management and mitigation
recommendations, and perform license compliance
verification.

Static analysis
Also referred to as static application security testing
(SAST), automated static analysis is used to identify
coding flaws within nonrunning (static) code.
Static analysis is an important part of the software
development life cycle (SDLC) and is commonly
used by most software development teams.

O
V

ER
V

IE
W

7 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

8 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Cyber Security

Marketing Tech

Healthcare, Health Tech,
Life Sciences

84%

82%

82%

Big Data, AI, BI,
Machine Learning

Virtual Reality, Gaming,
Entertainment, Media

Enterprise Software/SaaS

76%

72%

76%

Internet of Things

89%

Internet and Software
Infrastructure

79%

Aerospace, Aviation, Auto,
Transportation, Logistics

Telecommunications and
Wireless

Energy and Clean Tech

70%

81%

57%

Ed Tech

Retail and E-Commerce

Internet and Mobile Apps

82%

82%

48%

Computer Hardware and
Semiconductors

Manufacturing,
Industrials, Robotics

Financial Services and
FinTech

74%

84%

69%

INDUSTRY SECTORS AND OPEN SOURCE
Percentage of Codebases That Contain Open Source, by Industry

Average of 91 Codebases Audited per Industry

O
V

ER
V

IE
W

VULNERABILITIES
AND SECURITY

10 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

V
U

LN
ER

A
B

IL
IT

IE
S

A
N

D
 S

EC
U

RI
TY

0

2016

10
0

2020

Vulnerabilities in Codebases Percentage of codebases containing
at least one vulnerability

Percentage of high-risk
vulnerabilities per codebases

OPEN SOURCE VULNERABILITIES AND
SECURITY
A full 84% of the 1,500+ codebases Black Duck Audit
Services audited in 2020 contained at least one public
open source vulnerability—a 9% increase from the 75%
of 2019 and the second-highest increase seen since
2017. Similarly, the percentage of codebases containing
high-risk open source vulnerabilities increased to 60%
in 2020, a dramatic 11% increase from the 49% of the
2019 audits. “High-risk” indicates that a vulnerability
has been actively exploited, has documented proof-of-
concept exploits, or has been classified as a remote
code execution vulnerability. Several of the top 10 open
source vulnerabilities that were found in codebases in
2019 reappeared in the 2020 audits, all with significant
percentage increases.

67%

53%

77%

78%

60%

40%

49%

75%

84%

60%

11 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

Android applications containing open source

Android applications containing open source vulnerabilities

Vulnerabilities identified as high risk

PARALLELS BETWEEN
THE ‘STATE OF MOBILE
APPLICATION SECURITY’ AND
OSSRA REPORTS
The OSSRA results parallel the findings of the CyRC’s
2021 “Peril in a Pandemic: State of Mobile Application
Security” report. For that report, CyRC researchers used
binary analysis to scan over 3,000 of the most popular
Android applications in the Google Play Store. Over 98%
of those applications contained open source—and 63%
contained vulnerable open source libraries. Nearly half
of the open source vulnerabilities found in that report
were identified as high risk.

The “Peril in a Pandemic: State of Mobile Application
Security” report shows the clear impact the COVID-19
pandemic has had on the growth of app downloads,
as well as a corresponding likelihood that open source
vulnerabilities are present in those apps. Similarly, the
number of open source vulnerabilities increased in the
audits reported in the 2021 OSSRA, and that increase
is especially pronounced when looking at industry
breakdowns.

V
U

LN
ER

A
B

IL
IT

IE
S

A
N

D
 S

EC
U

RI
TY

11 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html

12 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Despite lockdowns and work-from-home policies,
businesses still need to seek prospects, close deals,
communicate with and support customers—all of which
engendered a significant increase in the use of customer
relationship technologies during 2020. Veeva Systems,
a cloud computing company serving the healthcare
sector, noted that it experienced 10 times more usage
of its customer relationship management products
during the pandemic. The videoconferencing company
Zoom emerged as one of the corporate success stories
of 2020, as video meetings became an essential part
of work and school. And retailer L.L. Bean saw its best
revenue growth since 2011 and added 1 million new
customers thanks to two hot retail segments fueled by
the pandemic—comfort clothing and outdoor gear.

The OSSRA data notes that 100% of the companies
audited in the marketing tech category—which includes
lead-generation, CRM, and social media—contained open
source in their codebases. Ninety-five percent of the
marketing tech codebases also contained open source
vulnerabilities. Seventy-one percent of the audited retail
and e-commerce codebases contained vulnerabilities.
Both the financial services/fintech and the healthcare
industry sectors had codebases with open source
vulnerabilities exceeding 60%.

20%

80%

40%

60%

100%

Percentage of Codebases With Open Source Vulnerabilities
Aerospace, Aviation, Automotive,
Transportation, Logistics

Big Data, AI, BI, Machine Learning

Computer Hardware
and Semiconductors

Cyber
Security

Ed Tech

Energy
and Clean
Tech

Enterprise
Software/SaaS

Financial Services
and FinTech

Healthcare,
Health Tech, Life
Sciences

Internet and
Software

Infrastructure

Internet and
Mobile Apps

Internet of
Things

Manufacturing,
Industrials,

Robotics

Marketing
Tech

Retail and
E-Commerce

Telecommunications
and Wireless

Virtual Reality, Gaming,
Entertainment, Media

2020
2019

V
U

LN
ER

A
B

IL
IT

IE
S

A
N

D
 S

EC
U

RI
TY

13 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Percentage of Codebases With Top 10 CVEs/BDSAs

BDSA-2019-1138 (CVE-2019-11358)

BDSA-2017-2930 (CVE-2015-9251)

BDSA-2014-0063*

BDSA-2015-0567**

BDSA-2020-0964 (CVE-2020-11023)

BDSA-2020-0955 (CVE-2020-11022)

CVE-2019-1010266

CVE-2019-10744

CVE-2018-16487

CVE-2018-3721

20% 40% 60% 80% 100%

15% increase since 2019

16% increase since 2019

9% increase since 2019

4% increase since 2019

The top 10 vulnerabilities
Several of the top 10 open source vulnerabilities—
including one that is a high-risk vulnerability—appearing
in the 2019 codebases reappeared in the 2020 audits,
some with significant increases in percentages. CVE-
2019-10744, a lodash vulnerability rated by the National
Vulnerability Database (NVD) as “critical” and affecting
all versions of the popular JavaScript library prior to
4.17.12, appeared in 29% of both years’ codebase audits.

Development teams appear to be struggling with the
dynamic nature of open source security risk, especially
with the increase in open source use. An open source
library with no vulnerabilities doesn’t necessarily stay
that way a year or a month—sometimes not even a
week—later. Access to reliable and diverse sources
of vulnerability data is critical to staying atop of open
source risk. Ideally, vulnerability information should
be pushed to developer or security teams via the alert
systems they already use, such as email, Slack, and
Microsoft Teams.

29% in both years’ audits

* BDSA-2014-0063 is a high-severity vulnerability in which jQuery is vulnerable to cross-site scripting (XSS) due to lack of validation
of user-supplied input. A fix is available.
** BDSA- 2015-0567 affects all jQuery versions that use an unpatched UglifyJS parser, opening them to arbitrary code execution
through crafted JavaScript files. A fix is available.

2020
2019

V
U

LN
ER

A
B

IL
IT

IE
S

A
N

D
 S

EC
U

RI
TY

14 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

It’s also possible that the knowledge that the codebase
was dependent on a vulnerable open source library
was buried somewhere inside the collective memory
of the development team—possibly forgotten,
possibly not documented at all. To fix an open source
vulnerability, you first have to know the vulnerability is
there. Pinpointing vulnerable open source depends on
identifying and inventorying all open source you’re using.

Most applications are dependent on hundreds of open
source libraries—the average number of libraries found in
the 2020 audits was 528 per codebase. An open source
inventory or Bill of Materials automatically generated by
a software composition analysis tool can provide the
comprehensive information needed to address security
risk.

Percentage of Codebases With Top 10 High-Risk CVEs/BDSAs

CVE-2019-10744

BDSA-2018-4597 (CVE-2018-14719)

CVE-2018-16487

BDSA-2015-0001 (CVE-2015-7501)

BDSA-2015-0753 (CVE-2015-6420)

CVE-2018-1000613

CVE-2015-5652

CVE-2020-8022

CVE-2017-1000487

CVE-2020-7598

20% 40% 60% 80% 100%

V
U

LN
ER

A
B

IL
IT

IE
S

A
N

D
 S

EC
U

RI
TY

LICENSING

16 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

LI
C

EN
SI

N
G OPEN SOURCE LICENSING

Black Duck Audit Services found that 65% of the 2020
audited codebases contained open source with license
conflicts, a slight decrease from 2019. Nearly three-
quarters of the codebases with a license conflict were
specifically in conflict with one version or another of the
GNU General Public License.

Twenty-six percent of the codebases were found to
be using open source with no license or a customized
license. Codebases with customized open source
licenses need to be evaluated for possible IP and other
legal issues. The JSON license, for example, essentially
uses the permissive MIT license with the addition, “The
Software shall be used for Good, not Evil.” Owners of
many popular projects—notably, Apache Foundation
projects—have removed code using the JSON license
because of the license’s ambiguity; that is, although
“software” is a defined term, “good” and “evil” are open to
arguable interpretation.

Codebases that include open source dependencies with
no discernable license also may require a decision about
whether to replace those dependencies altogether.

Broken down by industry, the sectors with the highest
percentage of codebases that contained open source
license conflicts (86%) were the energy and clean tech
sector and the manufacturing, industrials, robotics
sector. The retail and e-commerce sector had the lowest
percentage of codebases with open source license
conflicts at 47%.

60

2017

10
0

2020

Percentage of Codebases With License Conflicts

85%

68%
67%

65%

17 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Understanding license risk
According to copyright law, using software in any way
requires permission in the form of a license describing
the rights conveyed to users and the obligations users
must meet. Even the friendliest open source licenses
include obligations the user takes on in return for use of
the software.

Open source license litigation (including those for
copyright, contract, antitrust, patenting, and fair use) is
on the rise around the world. Potential license risk arises
when a codebase includes open source with licenses
that appear to conflict with the overall license of the
codebase. The most common example of this is open
source code under the GNU General Public License v2.0
(GPLv2), which often creates a conflict when compiled
into a distributed piece of commercial software. But
the same code isn’t a problem in software considered
software as a service (SaaS), because the GPL doesn’t
consider SaaS code to be “distributed.” This isn’t to imply
that SaaS software is immune from license conflicts;
some licenses can be problematic for SaaS as well.

80%

20%

40%

60%

100%

Percentage of Codebases With Licensing Conflicts, by Industry

Aerospace, Aviation, Automotive,
Transportation, Logistics

Big Data, AI, BI, Machine Learning

Computer Hardware
and Semiconductors

Cyber
Security

Ed Tech

Energy
and Clean
Tech

Enterprise
Software/SaaS

Financial Services
and FinTech

Healthcare,
Health Tech, Life
Sciences

Internet and
Software

Infrastructure

Internet and
Mobile Apps

Internet of
Things

Manufacturing,
Industrials,

Robotics

Marketing
Tech

Retail and
E-Commerce

Telecommunications
and Wireless

Virtual Reality, Gaming,
Entertainment, Media

2020
2019

LI
C

EN
SI

N
G

18 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Sometimes an open source component has a so-called
“custom license” in which the developer used their own
licensing language or added language to a standard
license. Such license additions are often well-intentioned
but can raise concerns, especially in merger and
acquisition transactions.

Whether open source or not, if third-party code doesn’t
have a license, serious legal issues can arise. In the U.S.
and many other jurisdictions, creative work—including
software—is placed under exclusive copyright by default.
Unless there’s a license that specifies otherwise (or the
copyright holders grant permission), no other party can
use, copy, distribute, or modify the software without the
risk of litigation.

20

2018

40

2020

Percentage of Codebases Containing Open Source With No License or Custom License

25%

33%

26%

LI
C

EN
SI

N
G

SUSTAINABILITY

20 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

SU
ST

A
IN

A
B

IL
IT

Y OPEN SOURCE SUSTAINABILITY
Of the 1,500+ codebases examined by Black Duck Audit
Services in 2020, a staggering 91% contained open
source dependencies that had had no development
activity in the last two years. That figure means 91% of
the codebases audited contained dependencies with
no feature upgrades, no code improvements, and no
security issues fixed over the past two years.

One of the reasons behind the popularity of open source
is the volunteer communities continuously updating
code and addressing vulnerabilities. Software developer
and author Eric Raymond calls this Linus’s Law in action:
with many eyes looking at code, “all bugs become
shallow.” A Purdue University study showed that Linus’s
Law does work—open source communities regularly
issue patches faster than their proprietary software
counterparts. But there’s no guarantee that the volunteer
community behind any given open source project will
continue maintaining the code indefinitely or that the
community will continue to have members who are
knowledgeable about the project’s code.

80

2018

10
0

2020

Percentage of Codebases Containing Components That Have Had No Development Activity
Within the Past Two Years

85%

88%

91%

THE PRICE OF POPULARITY
When an open source library becomes popular, the
price is increased pressure on its (usually unpaid)
maintainers—the people who handle bug reports,
feature requests, code reviews, and code commits for
the free software. It’s not unusual for the maintainers to
be a solo developer—a “random person from Nebraska,”
as the popular xkcd internet comic has it.

That random person is often the only bulwark
supporting their piece of the open source infrastructure
that modern software depends on. As an open source
project grows in popularity—with no corresponding
growth in people maintaining the project—the
consequence is often developer burnout, and many
open source projects are abandoned. The problem is
severe enough that The Core Infrastructure Initiative
was created to enable technology companies to
collaboratively identify and fund open source projects
that are in need of assistance, while still allowing
developers to continue their work under the community
norms that have made open source so successful.

SU
ST

A
IN

A
B

IL
IT

Y

21 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

https://www.coreinfrastructure.org/faq/

22 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Eighty-five percent of the codebases Black Duck
Audit Services examined in 2020 had open source
dependencies that were more than four years out-of-
date. That is, the codebases were using an open source
library with newer versions available—often with many
newer versions available. As noted earlier, it’s clear that
development teams are struggling to keep their open
source dependencies up-to-date.

Returning to the lodash vulnerability mentioned in the
“Top 10 vulnerabilities” section, 29% of the codebases
in both the 2020 and 2019 audits contained CVE-2019-
10744, even though an upgrade of the library that
addresses the vulnerability has been available since July
2019. Did the developers determine that the risk was low
enough to put off an update? Was their thinking “if it ain’t
broke, don’t fix it”? Were they even aware of the version of
the dependencies their applications call on? Postponing
a dependency update for six months to a year may be
justifiable, but what are we to make of the 85% of audited
codebases with open source libraries more than four
years behind the latest versions? ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

OF AUDITED CODEBASES
CONTAINED OPEN
SOURCE COMPONENTS
THAT WERE MORE THAN
FOUR YEARS OUT-OF-DATE

SU
ST

A
IN

A
B

IL
IT

Y

CONCLUSION

THE PETER PARKER PRINCIPLE
“With great power comes great responsibility.”
—anon., often attributed to Stan Lee

How does it feel to be part of a revolution? As the
data in the 2021 OSSRA report demonstrates, it’s rare
today to find an application that isn’t dependent on the
power of open source. Not only is more open source
in use, but more developers are writing open source.
The 2020 FOSS Contributor Report sponsored by the
Linux Foundation notes that nearly half of respondents
to its survey were being paid by their organizations
to contribute to open source projects. A CyRC survey
(“DevSecOps Practices and Open Source Management
in 2020”) indicates that the majority of organizations in
the business of building software—65%—have policies
in place allowing their developers to contribute to open
source projects.

Does your organization have a published
policy for its developers to make open source
contributions?
(“DevSecOps Practices and Open Source Management in 2020”
survey)

Yes

24 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

As this report has stated, paralleling the growth of open
source is a growth in risk—specifically around open
source security, code quality, and sustainability. Part
of the reason is that the increased use of open source
makes managing a dynamic, changing risk landscape
more difficult. To meet the challenge, development
teams need to have reliable and timely vulnerability
information, a comprehensive inventory of the open
source dependencies their software uses, accurate
guidance on vulnerability severity and exploitability, and
clear direction on how to patch the affected open source.

C
O

N
C

LU
SI

O
N

https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html?intcmp=sig-blog-ossras
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html?intcmp=sig-blog-ossras

25 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Mistakes versus malice
Although malicious attacks tend to steal the spotlight
in the media, code flaws introduced by mistake can be
just as disruptive and are much more likely to impact
open source projects. According to the “2020 State of the
Octoverse” report, 83% of the vulnerabilities that GitHub
sent alerts on from 2019 through 2020 were due to
coding errors rather than malicious intent.

If most attacks exploit unintentional vulnerabilities in
code, preventing these unintentional vulnerabilities
becomes all the more crucial. One strategy is to educate
developers on secure software development. Free
courses from OpenSSF are available on edX, and many
software security companies such as Synopsys offer
commercial application security eLearning courses.

Encouraging the use of detection tools such as static
analysis before code commit is another means to reduce
open source coding errors. Static analysis examines
source code against a set of coding rules to uncover
common coding errors. Synopsys offers a free static
analysis service for open source developers who have
registered their projects with scan.coverity.com. Coverity
Scan is powered by the same engine used by Synopsys’
commercial Coverity static analysis tool to help identify
code defects for fast and easy remediation. Respondents
to the Linux Foundation survey “overwhelmingly cited
Coverity Scan and clang security checkers” as the
primary static analysis tools they use. The next page
details a case study on how Coverity Scan helps ensure
code quality and security for NGINX Open Source.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

COVERITY SCAN DATA

Top 10 defects/vulnerabilities found in the scans
Resource leaks

Null pointer dereferences
Memory corruptions

Error handling issues
Control flow issues

Uninitialized variables
Cross-site scripting

Extra argument error in call
Insecure data handling
Uncaught exception

BILLION LINES
OF CODE
SCANNED

ACTIVE
PROJECTS
SCANNED

C
O

N
C

LU
SI

O
N

https://octoverse.github.com/
https://octoverse.github.com/
https://openssf.org/edx-courses/
https://openssf.org/edx-courses/
https://openssf.org/edx-courses/
https://www.synopsys.com/software-integrity/training/elearning.html
https://scan.coverity.com/

NGINX OPEN
SOURCE
A Coverity Scan
Case Study

One of the world’s most widely used web servers—
powering sites such as Netflix, Hulu, Pinterest, and
GitHub—NGINX Open Source (pronounced “engine
x”) is known for its high performance, stability, rich
feature set, simple configuration, and low resource
consumption. Other members of the NGINX Open
Source family include NGINX JavaScript (njs), a
module adding JavaScript support to NGINX; and
NGINX Unit, a dynamic application server supporting
applications written in Perl, Python, Ruby, Node.js, Go,
Java, and PHP.njs.

Developers for all three NGINX Open Source projects
use Coverity Scan® to find and fix defects in their code.
A free online service provided by Synopsys and powered
by the same engine used by Synopsys’ commercial
Coverity static analysis tool, Scan helps open source
developers identify code defects for fast and easy
remediation.

“I have a strong belief in the power of open source,” said
Igor Sysoev, the software’s author and cofounder of
NGINX in a 2014 interview. “NGINX was an experiment
focused on a very specific problem—how to handle
more customers on a single, existing server. It turned
out to be a universal problem. As soon as I realized
NGINX really helps to improve web performance, I
wanted people to use it, so I made it open source.”

A web server that can also be used as a reverse proxy,
load balancer, mail proxy, and HTTP cache, the open
source version of NGINX powers more than 400 million
websites. Sysoev cofounded NGINX in 2011 to provide

“High-impact” outstanding defects

●

●

● (75)

● ● ● ● ● ● ● ● (8)

● ● ● ● (4)

● (1)

Memory
corruptions

Uninitialized
variables

Memory
(illegal accesses)

Various

C
O

N
C

LU
SI

O
N formal support for NGINX Open Source and to offer a

commercial version, NGINX Plus, which adds enterprise-
grade features to NGINX Open Source.

NGINX was acquired by F5 Networks, an application
security and delivery company, in 2019. Today, the
NGINX family of open source projects include njs, a
module adding JavaScript support to NGINX and NGINX
Unit, a dynamic application server.

The problem: Ensuring open source code quality
and security
“We integrated Coverity Scan into our CI/CD pipeline
soon after establishing NGINX,” said Maxim Konovalov,
one of the company’s cofounders and now VP of
engineering. “We’ve been submitting NGINX build
artifacts daily since 2012.”

“In many cases, NGINX acts as an internet front end,”
continued Konovalov. “Its security and stability are
essential to its users. My team is passionate about
code quality and are always looking for best practices
and tools to help us improve it. Static code analyzers
such as Coverity Scan provide a great help to us.”

NGINX takes its role as a foundational technology to
millions of apps and websites very seriously. Code
quality and security are part of its ethos, and the
tools that help support that mission are integral to its
development practices.

The solution: Static code analysis with Coverity
Scan
Contrary to popular opinion, most software
vulnerabilities are the result of coding mistakes, not
malicious attacks. According to the “2020 State of the
Octoverse” security report, 83% of the vulnerabilities
that GitHub sent alerts on from 2019 through 2020 were
due to coding errors rather than malicious intent.

But malicious attacks do exploit flaws in code, and
developers need to embrace proactive detection tools
to uncover bugs in the code they write. Static analysis
examines source code against a set of coding rules to
uncover common coding errors.

The results: 658,000 lines of code scanned with a
defect density of 0.02%
In the January 2021 Coverity Scan of a NGINX build,
658,665 lines of code were analyzed, and various code
defects uncovered, including two CWE Top 25 defects.
Thanks to F5’s regular use of Coverity Scan, the NGINX
project has a defect density (number of defects per
1,000 lines of code) of only 0.02%.

“Coverity Scan provides an invaluable service to us,”
says Maxim Konovalov. “I regularly recommend Coverity
Scan and its ability to provide specific defect IDs in code
commits. And in fact, I’m a member of the FreeBSD
committers group, and we use Coverity Scan for code
analyses of FreeBSD as well.”

26 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

Create demand for a Bill of Materials
The concept of a software Bill of Materials (BOM) comes
from manufacturing, where the classic BOM is an
inventory detailing the items included in a product. When
a defective part is discovered, the manufacturer knows
precisely what product is affected and can begin the
process of repair or replacement.

While still a new concept to many, the demand for open
source BOMs is growing. In its 2020 Magic Quadrant for
Application Security Testing, Gartner predicted, “By 2024,
the provision of a detailed, regularly updated software Bill
of Materials by software vendors will be a non-negotiable
requirement for at least half of enterprise software
buyers, up from less than 5% in 2019.”

27 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

C
O

N
C

LU
SI

O
N If software vendors can anticipate that their enterprise

customers will require a software BOM, it’s fair to
anticipate the same for the open source projects the
software depends upon. For many projects this can
be done, at least in part, by package management
information that identifies direct and indirect
dependencies. Software composition analysis tools can
use this information to create more complete (specific
versions, license, etc.) BOM information.

Open source consumers should expect that many
projects—especially those with few active contributors—
won’t be ready to provide BOMs. This may be the perfect
opportunity for companies that depend on open source
projects to help develop and maintain the project’s BOM.

Coda
Whether you believe it was Voltaire or Peter Parker’s
Uncle Ben who first said, “with great power comes great
responsibility,” you can’t deny the proverb’s accuracy.
As part of the open source ecosystem we all share in
its power—and we all share responsibility to keep open
source safe and secure. It’s time we exercise our power
as developers and consumers of open source and take
on the shared responsibility of maintaining open source
quality and security.

28 2021 OPEN SOURCE SECURITY AND RISK ANALYSIS REPORT | ©2021 SYNOPSYS, INC.

FURTHER READING
• Backstabber’s Knife Collection: A Review of Open

Source Software Supply Chain Attacks
• Dependency Confusion: How I Hacked Into Apple,

Microsoft and Dozens of Other Companies
• DevSecOps Practices and Open Source

Management in 2020
• Finding Critical Open Source Projects (Google

blog)

 - Related: Finding Critical Open Source
Projects (Top 10 list)

• Get earlier, actionable vulnerability insights from
Black Duck Security Advisories

• How the Linux Foundation’s Software Signing
Combats Supply Chain Attacks

 - Related: What is sigstore?

• Know, Prevent, Fix: A framework for shifting the
discussion around vulnerabilities in open source

• Open source licenses: No license, no problem? Or
… not?

• OpenSSF: Secure Software Development
Fundamentals Courses

• Peril in a Pandemic: The State of Mobile
Application Security

• Preventing Supply Chain Attacks like SolarWinds
• TANSTAAFL! The tragedy of the commons meets

open source software
• What is a software bill of materials?

REFERENCES
1. Tyler Clifford, Veeva Systems sees product usage increase tenfold as

biotech companies race to find COVID-19 cure, CNBC, 3/26/2020.

2. David Sharp, L.L. Bean Sees Sales Boom Amid Pandemic’s Push to
Outdoors, U.S. News, 3/19/2021.

3. Wikipedia, Open source license litigation, accessed 3/26/2021.

4. Kemal Altinkemer, Jackie Rees, and Sanjay Sridhar; Vulnerabilities
and Patches of Open Source Software: An Empirical Study, Krannert
Graduate School of Management, The Center for Education and
Research in Information Assurance and Security, Purdue University;
1/2005.

5. Explain xkcd, 2347: Dependency, 8/17/2020.

6. Frank Nagle et al, Report on the 2020 FOSS Contributor Survey, The
Linux Foundation, 12/8/2020.

7. GitHub, Nicole Forsgren et al, The 2020 State of the Octoverse, 2020.

8. Frank Nagle et al, Report on the 2020 FOSS Contributor Survey, The
Linux Foundation, 12/8/2020.

9. Mark Horvath, Dionisio Zumerle, and Dale Gardner, Magic Quadrant
for Application Security Testing, Gartner, 4/29/2020.

C
O

N
C

LU
SI

O
N

https://rdcu.be/chbGn
https://rdcu.be/chbGn
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/devsecops-practices-open-source-management.html
https://opensource.googleblog.com/2020/12/finding-critical-open-source-projects.html
https://news.ycombinator.com/item?id=25381397
https://news.ycombinator.com/item?id=25381397
https://www.cloudsavvyit.com/10200/how-the-linux-foundations-software-signing-combats-supply-chain-attacks/
https://www.cloudsavvyit.com/10200/how-the-linux-foundations-software-signing-combats-supply-chain-attacks/
https://sigstore.dev/what_is_sigstore/
https://opensource.googleblog.com/2021/02/know-prevent-fix-framework-for-shifting-discussion-around-vulnerabilities-in-open-source.html
https://opensource.googleblog.com/2021/02/know-prevent-fix-framework-for-shifting-discussion-around-vulnerabilities-in-open-source.html
https://www.synopsys.com/blogs/software-security/unlicensed-open-source-scenarios/
https://www.synopsys.com/blogs/software-security/unlicensed-open-source-scenarios/
https://openssf.org/edx-courses/
https://openssf.org/edx-courses/
https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/mobile-application-security-covid.html
https://www.linux.com/news/preventing-supply-chain-attacks-like-solarwinds/
https://www.synopsys.com/blogs/software-security/tanstaafl-the-tragedy-of-the-commons-meets-open-source-software/
https://www.synopsys.com/blogs/software-security/tanstaafl-the-tragedy-of-the-commons-meets-open-source-software/
https://www.synopsys.com/blogs/software-security/software-bill-of-materials-bom/
https://www.cnbc.com/2020/03/26/veeva-systems-crm-usage-increased-tenfold-amid-race-to-find-covid-cure.html
https://www.cnbc.com/2020/03/26/veeva-systems-crm-usage-increased-tenfold-amid-race-to-find-covid-cure.html
https://www.usnews.com/news/business/articles/2021-03-19/ll-bean-sees-sales-boom-amid-pandemics-push-to-outdoors
https://www.usnews.com/news/business/articles/2021-03-19/ll-bean-sees-sales-boom-amid-pandemics-push-to-outdoors
https://en.wikipedia.org/wiki/Open_source_license_litigation
https://www.krannert.purdue.edu/academics/mis/workshop/papers/ars_092305.pdf
https://www.krannert.purdue.edu/academics/mis/workshop/papers/ars_092305.pdf
https://www.explainxkcd.com/wiki/index.php/2347:_Dependency
https://www.linuxfoundation.org/en/resources/publications/2020-foss-contributor-survey/
https://octoverse.github.com/
https://www.linuxfoundation.org/en/resources/publications/2020-foss-contributor-survey/
https://www.gartner.com/en/documents/3984345/magic-quadrant-for-application-security-testing
https://www.gartner.com/en/documents/3984345/magic-quadrant-for-application-security-testing

The Synopsys difference
Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing speed and productivity. Synopsys, a recog-
nized leader in application security, provides static analysis, software composition analysis, and dynamic analysis solutions that enable teams to quickly
find and fix vulnerabilities and defects in proprietary code, open source components, and application behavior. With a combination of industry-leading
tools, services, and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps and throughout the software development
life cycle.

About CyRC
The Synopsys Cybersecurity Research Center (CyRC) works to accelerate access to information around the identification, severity, exploitation, mitigation,
and defense against software vulnerabilities. Operating within the greater Synopsys mission of making the software that powers our lives safer and of
the highest quality, CyRC helps increase awareness of issues by publishing research supporting strong cybersecurity practices. For more information, go
to www.synopsys.com/software .

Synopsys, Inc.
690 E Middlefield Rd,
Mountain View, CA 94043 USA

Contact us:
U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2021 Synopsys, Inc. All rights reserved. Synopsys is a
trademark of Synopsys, Inc. in the United States and other
countries. A list of Synopsys trademarks is available at
www.synopsys.com/copyright.html . All other names
mentioned herein are trademarks or registered trademarks
of their respective owners. April 2021.

http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html

